<sub id="rfuc3"><p id="rfuc3"></p></sub>
        久久无码人妻一区二区三区午夜,国产极品美女高潮无套在线观看,亚洲AV肉丝网站一区二区无码,国产精品人妻久久毛片高清无卡,99久久精品国产一区二区暴力,久久国产成人亚洲精品影院老金 ,综合久久久久久久综合网,亚洲精品理论电影在线观看
        撥號(hào)18861759551

        你的位置:首頁 > 產(chǎn)品展示 > 光學(xué)儀器 > 光電探測(cè) >Newport Nirvana™ 自動(dòng)平衡光接收器

        產(chǎn)品詳細(xì)頁
        Newport Nirvana™ 自動(dòng)平衡光接收器

        Newport Nirvana™ 自動(dòng)平衡光接收器

        • 產(chǎn)品型號(hào):
        • 更新時(shí)間:2024-04-18
        • 產(chǎn)品介紹:為了消除與手動(dòng)平衡參考和信號(hào)光束相關(guān)的問題,Newport Nirvana™ 自動(dòng)平衡光接收器具有內(nèi)置的低頻反饋回路,可控制其中一個(gè)接收器的電子增益,并保持信號(hào)臂和參考臂之間的自動(dòng)平衡。您可以有效消除激光強(qiáng)度噪聲,并且在不使用鎖相放大器和光學(xué)斬波器的情況下進(jìn)行限制散粒噪聲的測(cè)量。
        • 廠商性質(zhì):經(jīng)銷商
        • 在線留言

        產(chǎn)品介紹

        品牌Newport/美國(guó)價(jià)格區(qū)間面議
        組件類別光學(xué)元件應(yīng)用領(lǐng)域電子/電池

        Newport Nirvana™ 自動(dòng)平衡光接收器

        為了消除與手動(dòng)平衡參考和信號(hào)光束相關(guān)的問題,Nirvana 自動(dòng)平衡光接收器具有內(nèi)置的低頻反饋回路,可控制其中一個(gè)接收器的電子增益,并保持信號(hào)臂和參考臂之間的自動(dòng)平衡。您可以有效消除激光強(qiáng)度噪聲,并且在不使用鎖相放大器和光學(xué)斬波器的情況下進(jìn)行限制散粒噪聲的測(cè)量。

        可將共模噪聲降低 50 dB

        保持參考臂和信號(hào)臂之間的自動(dòng)直流平衡

        自動(dòng)平衡或手動(dòng)平衡模式

        增益和帶寬

        非常適用于光譜分析

        Newport Nirvana™ 自動(dòng)平衡光接收器

        對(duì)比型號(hào)
        Newport Nirvana™ 自動(dòng)平衡光接收器1837 GHz Nirvana 自動(dòng)平衡光接收器,900-1650 nm
        Newport Nirvana™ 自動(dòng)平衡光接收器2007 Nirvana 自動(dòng)平衡光接收器,400-1070 nm,125 kHz,8-32/M4
        Newport Nirvana™ 自動(dòng)平衡光接收器2017 Nirvana 自動(dòng)平衡光接收器,800-1700 nm,125 kHz,8-32/M4


        Newport Nirvana™ 自動(dòng)平衡光接收器產(chǎn)品規(guī)格


        型號(hào)Newport Nirvana™ 自動(dòng)平衡光接收器
        1837
        Newport Nirvana™ 自動(dòng)平衡光接收器
        2007
        Newport Nirvana™ 自動(dòng)平衡光接收器
        2017
        光輸入FC/APCFC and Free SpaceFC and Free Space
        探測(cè)器直徑
        2.5 mm1 mm
        探測(cè)器類型PINPINPIN
        波長(zhǎng)范圍900-1650 nm400-1070 nm800-1700 nm
        3 dB 帶寬100 kHz to 300 MHzDC to 125 KHzDC to 125 KHz
        共模抑制25 dB50 dB50 dB
        上升時(shí)間1 ns3 µ s3 µ s
        大轉(zhuǎn)換增益30,000 V/W5.2 x 105
        V/W
        1 x 106
        V/W
        大跨阻抗增益40,000 V/A1x106
        V/A
        1x106
        V/A
        大射頻功率20 dB THD @ 100 MHz+12 dBm bei 50 Ω+12 dBm bei 50 Ω
        NEP15 pW/√Hz3 pW/√Hz3 pW/√Hz
        峰值響應(yīng)度0.75 A/W0.5 A/W1.0 A/W
        飽和功率1 mW1 mW0.5 mW
        大光功率
        4 mW4 mW
        輸出接頭SMBMale BNCMale BNC
        輸出阻抗50 Ω100 Ω100 Ω
        螺紋類型8-328-328-32


        特征

        可將共模噪聲降低 50 dB

        Nirvana 的zhuan利電路除去了參考和信號(hào)光電流,進(jìn)而消除了這兩個(gè)通道常有的噪聲信號(hào)。與單光束實(shí)驗(yàn)相比,這使您測(cè)量信號(hào)功率時(shí),對(duì)于 125 kHz 模型,噪聲減少了 50 dB;對(duì)于 1 GHz 模型,噪聲減少了 25 dB。

        Newport Nirvana™ 自動(dòng)平衡光接收器

        保持參考臂和信號(hào)臂之間的自動(dòng)直流平衡

        與傳統(tǒng)的平衡接收器不同,即便兩個(gè)探測(cè)器上的平均光強(qiáng)度不同且會(huì)隨時(shí)間變化,Nirvana 的電子增益補(bǔ)償也可自動(dòng)實(shí)現(xiàn)平衡探測(cè)。自動(dòng)平衡技術(shù)可以消除來自動(dòng)態(tài)變化系統(tǒng)中的背景噪聲,包括熱漂移和波長(zhǎng)依賴性,實(shí)現(xiàn)參考光束和信號(hào)光束之間的*功率平衡。

        Newport Nirvana™ 自動(dòng)平衡光接收器

        400-1070 nm 或 800-1700 nm 版本

        我們提供兩個(gè) Nirvana 光接收器,涵蓋 400-1070 nm 或 800-1700 nm 光譜范圍。


        自動(dòng)平衡或手動(dòng)平衡模式

        Nirvana 光接收器可在信號(hào)模式、平衡模式或自動(dòng)平衡模式下工作。光電探測(cè)器 (A) 的輸出可以表示為 A=(IS – g x IR) x Rf。在這里,IS 是信號(hào)光電二極管電流,IR 是參考光電二極管電流,Rf 是反饋電阻的值,g 是電流分流比,用于表示參考電流有多少來自消除節(jié)點(diǎn) (Isub),有多少來自地面。在信號(hào)模式下,g 為零,沒有參考光電流來自消除節(jié)點(diǎn)。這里,輸出 A 僅僅是放大的信號(hào)電流。在平衡模式下,g 等于 1,所有參考光電流來自消除節(jié)點(diǎn)。在該模式下,A=(IS–IR)•Rf,光電探測(cè)器作為普通的平衡光接收器,如果直流光電流相等,則消除激光噪聲。在自動(dòng)平衡模式下,g 由低頻反饋回路以電子方式控制,以保持相等的直流光電流,抵消激光噪聲,而與光電流的大小無關(guān)。

        Newport Nirvana™ 自動(dòng)平衡光接收器

        The feedback loop in the Nirvana™ photoreceiver splits the reference photodetector current, IR, to generate the cancellation photocurrent, Isub. When the DC value of Isub equals the signal current, IS, the laser-amplitude noise is cancelled.

        Femtosecond Ultrasonics Application Example

        Newport Nirvana™ 自動(dòng)平衡光接收器

        The optical components of improved laser-based acoustic set-up for thin film and microstructure metrology.

        One example associated with the balanced photodetection technique is femtosecond ultrasonics wherein a femtosecond laser pulse is used to excite an acoustic wave in a material. The length of mechanical (acoustic) wave determines the resolution of ultrasound. Depending upon the materials for test, the velocity of sound, propagating through the media, has a magnitude in the order of 103
        m/s. The acoustic wavelength employed in classical ultrasonics locates at around 0.1–10 mm, depending on materials and frequencies. A growing demand of computer chip manufacturers for non-destructive testing of microstructures and thin films has pushed the wavelength scope down to 10–20 nm.

        Piezoelectric devices used for production and echo detection of acoustic waves in the macroscopic scale are too rigid in order to resolve signals within time scales of a few picoseconds and corresponding frequencies of 0.30.6 THz. In 1987, researchers at Brown University
        proposed the use of laser-generated ultrasound for film thickness measurements. The performance of the laser-based acoustic
        method has been further improved recently by means of double-frequency modulation, cross-polarization, and balanced photodetection techniques. Shown above
        is an improved pump-probe laser-based ultrasonic set-up as it is realized at the Center of Mechanics, Swiss Federal Institute of Technology in Zürich. The specimens (DUTs) consist of aluminum film
        on a sapphire substrate.

        A Ti:sapphire laser is used in this event to create short laser pulses having durations of less than 70 fs (1015
        s) and a wavelength of 810 nm at a repetition rate of 81 MHz. The laser beam is split into a pump beam (carrying 90% of the energy) and a weaker probe beam by a beamsplitter. The short pump pulse hits perpendicular to the surface of the film specimen, and is absorbed within a thin surface layer (less than 10 nm deep). A mechanical stress is generated, which then excites thermo-elastically an acoustic pulse. When the bulk wave propagates and hits a discontinuity of the acoustic impedance (note: the film substrate border represents a strong discontinuity of the acoustic impedance), an echo
        occurs which is heading back to the surface of the film. Reaching the surface, the echo causes a slight change of the optical reflectivity.

        The purpose of the probe pulse is to scan the optical reflectivity at the thin film surface versus time. Therefore, the experiments are constantly repeated at a repetition rate of 81 MHz, while the length of the optical path of the pump beam is varied. This means that the relative time shift between the pump pulse and the probe pulse is varied, and the optical reflectivity at the surface is scanned versus this relative time shift.

        Frequency Modulation Spectroscopy Application Example

        Newport Nirvana™ 自動(dòng)平衡光接收器

        Diode-laser-based trace gas sensor configuration for continuous NH3 concentration measurements at 1.53 µm.6

        In order to interrogate the spectral absorption profile of a sample (such as a noble gas),
        frequency modulation spectroscopy
        takes advantage of the change in optical absorption as a function of the frequency (wavelength) of light passed through the sample. A tunable laser can be used to generate a beam whose wavelength is time-varying. This beam is then split into two beams for balanced detection, one passing through the sample, and the other going directly into the reference photodiode. This differential measurement is the basis of FM
        spectroscopy. Since the time axis of the observed signal is directly related to the optical frequency, the observed signal can easily be couched in terms of optical frequency (hence the name frequency modulation spectroscopy). By
        using a balanced photoreceiver, any fluctuations of the laser's intensity can be directly eliminated. In addition, the small percentage fluctuations on the DC optical signal due to the time-varying absorption of the sample can be detected with greatly enhanced signal-to-noise by employing a balanced photoreceiver. Light scattering spectroscopy (LSS) detects the scattered electric field interferometrically. It is very sensitive to phase front variations in the scattered wave.



        留言框

        • 產(chǎn)品:

        • 您的單位:

        • 您的姓名:

        • 聯(lián)系電話:

        • 常用郵箱:

        • 省份:

        • 詳細(xì)地址:

        • 補(bǔ)充說明:

        • 驗(yàn)證碼:

          請(qǐng)輸入計(jì)算結(jié)果(填寫阿拉伯?dāng)?shù)字),如:三加四=7

        聯(lián)系我們

        地址:江蘇省江陰市人民東路1091號(hào)1017室 傳真:0510-68836817 Email:sales@rympo.com
        24小時(shí)在線客服,為您服務(wù)!

        版權(quán)所有 © 2025 江陰韻翔光電技術(shù)有限公司 備案號(hào):蘇ICP備16003332號(hào)-1 技術(shù)支持:化工儀器網(wǎng) 管理登陸 GoogleSitemap

        在線咨詢
        QQ客服
        QQ:17041053
        電話咨詢
        0510-68836815
        關(guān)注微信
        主站蜘蛛池模板: 亚洲性无码一区二区三区| 东京热中文字幕a∨无码| 乳欲人妻办公室奶水| 精品成人免费国产片| 午夜一区二区三区av| 日韩欧美一卡2卡3卡4卡无卡免费2020| 九九热在线视频| 人妻丝袜中文字幕久久| 国产免费AV片无码永久免费| 日本三级精品| 国产人妖ts在线观看网站| 婷婷色爱区综合五月激情韩国| 日本japanesexxxx高潮| 中文字幕乱码免费在线视频| 亚洲VA中文字幕无码毛片| 成人国产精品一区二区免费麻豆| 在线观看国产精美视频| 熟妇就是水多12p| 91精品国产一区| 国产主播精品福利午夜二区| 免费人成黄页在线观看国际| 欧美日韩国产精品va| 免费精品99久久国产综合精品 | 精品一区二区中文字幕| 久久精品国产亚洲av成人| 久久中文字幕av第二页| 亚洲熟妇无码爱v在线观看| 高清中文字幕一区二区| 2020国产精品视频| 18禁午夜宅男成年网站| 日韩亚洲制服丝袜中文字幕| 12裸体自慰免费观看网站| 亚洲熟女乱色一区二区三区| 8AV国产精品爽爽ⅤA在线观看| 国产色无码专区在线观看| 欧美人禽zozo动人物杂交| 色综合久久中文综合久久激情| 久久国产精品免费一区| 18禁无遮挡国产免费观看| 好大好硬好爽免费视频| 国产精品无码久久久久免费AV|