<sub id="rfuc3"><p id="rfuc3"></p></sub>
        久久无码人妻一区二区三区午夜,国产极品美女高潮无套在线观看,亚洲AV肉丝网站一区二区无码,国产精品人妻久久毛片高清无卡,99久久精品国产一区二区暴力,久久国产成人亚洲精品影院老金 ,综合久久久久久久综合网,亚洲精品理论电影在线观看
        撥號18861759551

        你的位置:首頁 > 技術文章 > 光學畸變比較

        技術文章

        光學畸變比較

        技術文章

        Comparison of Optical Aberrations

        Optical aberrations are deviations from a perfect, mathematical model. It is important to note that they are not caused by any physical, optical, or mechanical flaws. Rather, they can be caused by the lens shape itself, or placement of optical elements within a system, due to the wave nature of light. Optical systems are typically designed using first order or paraxial optics in order to calculate image size and location. Paraxial optics does not take into account aberrations; it treats light as a ray, and therefore omits the wave phenomena that cause aberrations. For an introduction on optical aberrations, view Chromatic and Monochromatic Optical Aberrations.

         

        After defining the different groups and types of chromatic and monochromatic optical aberrations, the difficult part becomes recognizing them in a system, either through computer analysis or real-world observation, and then correcting the system to reduce the aberrations. Typically, optical designers first put a system into optical system design software, such as Zemax® or Code V®, to check the performance and aberrations of the system. It is important to note that after an optical component is made, aberrations can be recognized by observing the output of the system.

         

        Optically Identifying Aberrations

        Determining what aberrations are present in an optical system is not always an easy task, even when in the computer analysis stage, as commonly two or more aberrations are present in any given system. Optical designers use a variety of tools to recognize aberrations and try to correct for them, often including computer generated spot diagrams, wave fan diagrams, and ray fan diagrams. Spot diagrams illustrate how a single point of light would appear after being imaged through the system. Wave fan diagrams are plots of the wavefront relative to the flattened wavefront where a perfect wave would be flat along the x direction. Ray fan diagrams are plots of points of the ray fan versus pupil coordinates. The following menu illustrates representative wave fan and ray fan diagrams for tangential (vertical, y direction) and sagittal (horizontal, z direction) planes where H = 1 for each of the following aberrations: tilt (W111), defocus (W020), spherical (W040), coma (W131), astigmatism (W222), field curvature (W220), and distortion (W311). Simply select the aberration of interest to see each illustration.

         

        Aberration Name (Wavefront Coefficient):

        Recognizing aberrations, especially in the design stage, is the first step in correcting for them. Why does an optical designer want to correct for aberrations? The answer is to create a system that is diffraction limited, which is the best possible performance. Diffraction-limited systems have all aberrations contained within the Airy disk spot size, or the size of the diffraction pattern caused by a circular aperture (Figure 1).

         

        Equation 1 can be used to calculate the Airy disk spot size (d) where λ is the wavelength used in the system and f/# is the f-number of the system.

         

        OPTICAL ABERRATION EXAMPLES

        After a system is designed and manufactured, aberrations can be observed by imaging a point source, such as a laser, through the system to see how the single point appears on the image plane. Multiple aberrations can be present, but in general, the more similar the image looks to a spot, the fewer the aberrations; this is regardless of size, as the spot could be magnified by the system. The following seven examples illustrate the ray behavior if the corresponding aberration was the only one in the system, simulations of aberrated images using common test targets (Figures 2 - 4), and possible corrective actions to minimize the aberration.

         

        Simulations were created in Code V® and are exaggerated to better illustrate the induced aberration. It is important to note that the only aberrations discussed are first and third orders, due to their commonality, as correction of higher order aberrations becomes very complex for the slight improvement in image quality.

        Figure 2: Fixed Frequency Grid Distortion Target

         

        Figure 3: Negative Contrast 1951 USAF Resolution Target

         

        Figure 4: Star Target

         

        Tilt – W111

         

        Figure : Representation of Tilt Aberration

        Figure 5b: Simulation of Tilt Aberration

        Characterization

        Image Has Incorrect Magnification

        Caused by Actual Wavefront Being Tilted Relative to Reference Wavefront

        First Order: W111 = Hρcos (θ)

        Corrective Action

        Change System Magnification

         

        Defocus – W020

         

        Figure 6a: Representation of Defocus Aberration

        Figure 6b: Simulation of Defocus Aberration

        Characterization

        Image in Incorrect Image Plane

        Caused by Wrong Reference Image

        Used to Correct for Other Aberrations

        First Order: W020 = ρ2

        Corrective Action

        Refocus System, Find New Reference Image

         

        Spherical – W040

         

        Figure 7a: Representation of Spherical Aberration

        Figure 7b: Simulation of Spherical Aberration

        Characterization

        Image Appears Blurred, Rays from Edge Focus at Different Point than Rays from Center

        Occurs with all Spherical Optics

        On-Axis and Off-Axis Aberration

        Third Order: W040 = ρ4

        Corrective Action

        Counteract with Defocus

        Use Aspheric Lenses

        Lens Splitting

        Use Shape Factor of 1:PCX Lens

        High Index

         

        Coma – W131

         

        Figure 8a: Representation of Coma Aberration

        Figure 8b: Simulation of Coma Aberration

        Characterization

        Occurs When Magnification Changes with Respect to Location on the Image

        Two Types: Tangential (Vertical, Y Direction) and Sagittal (Horizontal, X Direction)

        Off-Axis Only

        Third Order: W131 = Hρ3;cos(θ)

        Corrective Action

        Use Spaced Doublet Lens with S in Center

         

        Astigmatism – W222

         

        Figure 9a: Representation of Astigmatism Aberration

        Figure 9b: Simulation of Astigmatism Aberration

        Characterization

        Causes Two Focus Points: One in the Horizontal (Sagittal) and the Other in the Vertical (Tangential) Direction

        Exit Pupil Appears Elliptical Off-Axis, Radius is Smaller in One direction

        Off-Axis Only

        Third Order: W222 = H2ρ2cos2(θ)

        Corrective Action

        Counteract with Defocus Use Spaced Doublet Lens with S in Center

         

        Field Curvature – W220

         

        Figure 10a: Representation of Field Curvature Aberration

        Figure 10b: Simulation of Field Curvature Aberrationn

        Characterization

        Image is Perfect, but Only on Curved Image Plane

        Caused by Power Distribution of Optic

        Off-Axis Only

        Third Order: W220 = H2 ρ2

        Corrective Action

        Use Spaced Doublet Lens

         

        Distortion – W311

         

        Figure 11a: Representation of Distortion Aberration

         

        Figure 11b: Simulation of Barrel Distortion Aberration

        Figure 11c: Simulation of Pincushion Distortion Aberration

        Characterization

        Quadratic Magnification Error, Points on Image Are Either Too Close or Too Far from the Center

        Positive Distortion is Called Barrel Distortion, Negative Called Pincushion Distortion

        Off-Axis Only

        Third Order: W311 = H3ρcos(θ)

        Corrective Action

        Decreased by Placing Aperture S in the Center of the System

         

        Recognizing optical aberrations is very important in correcting for them in an optical system, as the goal is to get the system to be diffraction limited. Optical and imaging systems can contain multiple combinations of aberrations, which can be classified as either chromatic or monochromatic. Correcting aberrations is best done in the design stage, where steps such as moving the aperture s or changing the type of optical lens can drastically reduce the number and severity (or magnitude) of aberrations. Overall, optical designers work to reduce first and third order aberrations primarily because reducing higher order aberrations adds significant complexity with only a slight improvement in image quality.

        聯系我們

        地址:江蘇省江陰市人民東路1091號1017室 傳真:0510-68836817 Email:sales@rympo.com
        24小時在線客服,為您服務!

        版權所有 © 2025 江陰韻翔光電技術有限公司 備案號:蘇ICP備16003332號-1 技術支持:化工儀器網 管理登陸 GoogleSitemap

        在線咨詢
        QQ客服
        QQ:17041053
        電話咨詢
        0510-68836815
        關注微信
        主站蜘蛛池模板: 国内精品自在欧美一区| 国产成人久视频免费| 推油少妇久久99久久99久久| 中文字幕巨大的乳专区| 丰满爆乳无码一区二区三区| 免费99精品国产自在现线| 国产婷婷精品av在线| 夜色资源站www国产在线观看| 强开少妇嫩苞又嫩又紧九色 | 国产精品福利一区二区在线播放| 国精品午夜福利视频不卡| 男人的天堂a在线视频| 午夜福利免费一区二区| 亚洲色大成网站www国产| 国产成人欧美综合在线影院| 亚洲AV秘 无码一区二区三区1 | 亚洲欧洲日本天天堂在线观看| 无码日韩人妻av一区免费 | 久久精品国产免费观看频道| 全程粗话对白视频videos| 人禽伦免费交视频播放| 网友自拍视频精品区| 亚洲午夜久久久久久久久久| 国产成人无码免费网站| 亚洲成av人在线播放无码| 熟女系列丰满熟妇AV| 久久久久久久久蜜桃| 亚洲欧洲日产国码久在线| 大香伊人久久| 国产69精品久久久久9999不卡| 欧美.成人.综合在线| 免费无码又黄又爽又刺激| 天天av天天翘天天综合网色鬼| 91精品国产自产在线老师啪l| 亚洲精品一区二区五月天| 欧美日韩无套内射另类| 成人av中文字幕在线| 亚洲AV日韩AV一区谷露| 两个人看www在线视频| av成人无码无在线观看| 熟女系列丰满熟妇AV|